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Modeling experimental data in a Monte Carlo simulation
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A method is presented for modeling the structure of disordered media consistent with a set of experimental
observations, such as scattering data. The data are incorporated into a conventional semigrand canonical Monte
Carlo simulation by introducing a generalized, polydisperse composition space. This approach improves upon
previous reverse Monte Carlo procedures in that thermodynamic consistency is retained. By way of example,
the structure of a Lennard-Jones fluid is derived solely from radial distribution data.
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The so-called “inverse problem” is fundamental to the the processing history. Data may be of either theoretical or
study of fluids[1]. It entails the deduction of an interaction empirical origin, creating the opportunity to refine structural
potential from measurements of structure, such as scatteringodels, to test one experimental result against another, or to
data. Several methods aimed at solving a part of this probdentify redundant measurements.
lem, the determination of detailed structure from experimen- In the physics of fluids, a polydisperse substance is a mix-
tal data, have appeared in recent ydars5]. One reason for ture of infinitely many components. The concept was first
the popularity of these methods is that conventional Montelefined by de Donddi 1], and has been invoked extensively
Carlo and molecular dynamics simulations often fail to re-in recent years in the theof¢2—15 and simulatiorj 16—18
produce known information about the system within acceptOf phase equilibria. Following Briano and Glandi9], we
able accuracy, perhaps due to limitations in the method or iff€gin by assuming that the components of the fluid interact
the interaction potential available, and offer little guidancethrough a pair-wise additive potential given by
when agreement between the experimental observation ard®(ri.fj.li,l;), where | is a random, component-
its simulated equivalent is unsatisfactory. There is a needlesignating variable, distributed accordingpd) such that
then, to devise modeling or simulation methods which are?(l) is normalized and everywhere non-negative. For a mix-
consistent with the statistical mechanics of fluids or glassegure ofc components in the limit—c, the grand canonical
but which correctly reproduce known observations about théartition function may be written
system. One method that accomplishes the latter is the re- .
verse Monte Carl§RMC) method[2], which has found ap-  _ 1
plications in the study of liquids, glasses, polymers, and even EV.T,u(h]=1+ N§=:l WJ, J, .Hl
imperfect crystals; for reviews, s¢é—8]. RMC replaces the ! N
role of interaction potential in the conventional Metropolis N
Monte Carlo(MMC) method with a measure of error in a Xf f e YT (dridry). (1)
configuration relative to the observed structure factor, while f N =1
the role of temperature is replaced by experimental uncerg
tainty. However, the thermodynamic interpretation is lost
thus raising questions about uniqueness and disagreemen
to how to improve upon the original procedyr&é9,1d.

The goal of this article is to show that information from

experiments can be incorporated simply and directly into =S¢, and B=(keT) L. We define the activity
— “ij=i®ij s —\"B .

simulation through the introduction of a generalized, pOIy'aﬁl)zexq,B,u(l)], residual activitya* (1)=a(1)/p(l), and

disperse_composit_ion space. This perm_its a general approa%onfigurational integray= [ - exp( AU)ILdr; . Itis also
to modeling experimental data or other information about the . ; N =
i - : . . convenient to define a referenge and transform to the
system(i.e., not limited to scattering datavhich retains the isomolar semigrand canonical ensemble, wheisfixed but
character of a thermodynamic system and which reverts to a '

conventional statistical mechanical procedure when the exgomposnmn Is not. The resulting partition function is

perimental data are absent. Experimental data can be mod- v T a*(1)/a*
eled in the absence of an accurate interaction potefiltiss- NNV T a% (/e ]

N

[_?\'”3‘5:"; eBu(ly)

is the number of particles comprising the system, each

t’wiéh position r; and component designatioh. u(l),
nt(1), and A(l) are the chemical potential, internal parti-

tion function, and de Broglie wavelength, respectively, for a
article of typel. U is the potential energy of the system,

trated here by the Lennard-Jones fluid examphut the Zu [ g™ N a*(1,)p(1) N
inclusion of both data and interaction potential within a ——[F} f f H *—} dl;.
single simulation can also be handled, without adjustable pa- e JIni=l ar Pr =1

rameters. Furthermore, thermal fluctuations are properly re- 2)
tained, allowing ensembles consistent with a canonical simu-

lation to be realized. Finally, the general structure of theln Eq. (2), we have factored out the contributions from
method suggests a wide range of possible uses, including thg,(1)/A3(1), which are independent dfin the examples to
modeling of structure and orientation in materials that reflecfollow. Taking the functional derivative oYy with respect
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to a(l), one obtains the following important result for the ues of the particles are independent, then agdifl)=a,
probability distributionp(l) of any polydisperse parameter =1, and one immediately obtains a simulation that samples
[19]: the desired distributiop, (1) in a single run. The more gen-
eral and interesting case occurs when thealue of each
1 Zy a*(1;) p(l,) particle is coupled to that of the other particles of the system.
p(l)= Y_f j NI ar p_ H dl;. In this casea* (1) is an unknown function, to be determined
N2 N ' =2 3 iteratively. One suitable procedure, employed here, uses a
trial functionag (1) to obtain the estimatp,(l) from a short
With regard to Eq.(3), several points are noteworthy. Ssimulation. An improveda; (1) may then be obtained using
Speciation of the system is arbitrary, so long as each com- N
ponent is stipulated in a definite way afL,5(1;—1) a. (h=at(l) Pral ) pr,k} ,
=n(l), wheren(l) is the number of “particles” of typd Prtar Pk(1)
[20]. The species labelis not limited to indexing of chemi- .
cally distinct entities; as early as 1949, Onsager introducet']md the Process r'ep.eated urpl;[(!) CONVerges t(pta.f(l) fgr
the artifice of treatingotherwise identicalanisometric par- all | to within statlst|ca.l uncertalntw indexes t-he iteration.
ticles of different orientation as being of different kind in 1N€ exponent &a<11s a damping factor to improve con-
order to evaluate solution imperfecti§®l]. Thus a system Vergence. ay(1)=1 has been used here, although other
that is monodisperse in one sense, e.g., a crystal of identic§N0ices are possible. ,
Lennard-Jones particles, may at the same time be polydis- By way qf illustration, we consider the standard p_roblem
perse if speciated in a different manner, e.g., by treating th@f determining the structure of a Lennard-Jones fluid from
phonons as the “particles.” Furthermore, E@) does not scattering (_jata. Identifying Fhe polydispersity mdbmth_
require thaia(1;) be independent of the values,; . In gen- the scattering vectoq, one.flrst observes that the on_glnal
eral, speciation may involve more than one parameter, resulformulation of RMC satisfies the more general semigrand
ing in the replacement dfby a vectorl of component labels. €nsemble Monte Carlo formulation presented here, with an
If a set of observations can be formulatedps), then the ~ ctivity function for reciprocal space(q), defined as
equations above may be used to construct a Monte Carlo 1 1[AQ) —An(Q)
procedure by which a molecular model that reproduces these a(q)= —ex;{ |2 Tendl
observations is simulated directly. Na 2 o(q)

2
) . (6)

Unlike a phase equilibrium calculation, whose objective 'SA(q) is the structure factor anet(q) is the experimental

to determine coexisting compositiop$l ), given knowledge L . .
of the chemical potentials, modeling experimental data in_uncertamty in the daté,(q). Na is a constant required to

o . L normalize p(q), but its exact value is inconsequential to
volves determining the chemical potential distributje(l), . . . . i o .
. " . implementing the simulation. Defining the activity directly in
or equivalentlya* (1), responsible for the observed data

p(1). At first glance, it might appear reasonable to construc{hls manner eliminates the thermodynamic temperature from

. . o he simulation, replacing it with a nonthermodynamic quan-
a cgnﬁgu'ratmn' thgt satl.sﬁqs(l)., and then perform a ca- tity o(q). This has the undesirable consequence of altering
nonical simulation in whickp(l) is conserved. However, in

many real applications, it is not a trivial matter to constructthe fluctuations in the ensemble from their thermodynamic
y PP ’ values—as the experimental uncertainty decreases, the effec-

even an initial trial configuration that satisfies the desired[ive simulation temperature decreases, regardless of the true
distribution p(l). Furthermore, imposing an experimentally experimental temperature '

observed distribution on each configuratioividually (a Instead, we associate(l;) with a normalizedN-particle

guenched composition)’is too restrictive and usually not distribution functiong(N)(rij,j#) specific to particld, i.e.,

justified by the experimental data. For these reasons, the o g ! . . :
. . . each particle is speciated according to its position relative to
semigrand ensemble simulations suggested here are pref

able, both in principle and in practice. fhe rest of the system. Invoking the approximation

Ny Y~TT.a(r: ; o e
i i ' g™ (ryj ;1) =I1;9(r;;), whereg(r) is the radial distribution
In a Monte Carlo simulation of polydisperse components Unction, ‘one 'can rewrite Eq(3) with p(l) equal 1o

one satisfies detailed balance by accepting a trial conflgur%p/N)g(r) and the product taken over all pairg(r) is

tion according to the following importance criterigm is a / . . i .
pseudorandom number between 0 and 1 readlly.obtglned by inverse Fogner transformgtloqu), .
truncation issues notwithstanding, and contains in principle

N the same information. Grouping contributions of simitar
“BUTT a*(1; I the number of pairwise interactions betweeandr + 6r is
€ ) a ( |)ptar( |) 2 . . . .
) i=1 new n(r)=pN(2mr<ér)g(r), resulting in the following inequal-
m=miny 1, N . (4 ity for importance sampling22]:
{e_ﬁuﬂl a*(li)ptal(li)] eut
B old

m$min{ 1e PAYTT [af (NG, (@)
r=0

pwad1) is the target distribution for the parametetf p;,(1)
is independent of, thena* (1) =a, =1, and one recovers the where gy, (r) is the target(e.g., experimentaldistribution
conventional Metropolis Monte Carlo procedure. If theal-  function, ag (r) is the kth estimate of the residual activity
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TABLE I. Result of Lennard-Jones fluid simulatioq&J)/N is
the average potential energy per particle épydis the pressurénot
including long range correctionso(X) =(X2)—(X)2. MMC: Me-
tropolis Monte Carlo. RMC: reverse Monte Carlo of R¢R].
SGMC: method based on the semigrand canonical ensemble.

teraction potential truncated at,=2.50, consistent with
previous studie$24]. The particles were initially placed on
the fcc lattice and equilibrated for 2048 Monte Carlo cycles,
followed by 2048 cycles at each iteration faf (r). Statis-
tical uncertainties of 0.01 and 0.001 fQU)/N and g(r),

p* =0.84,T*=0.75 p* =0.55,T*=1.35 respectively, were gstimated by the “blocking”'metr'{('ﬁ’.ﬁ].

For each state point, a conventional MMC simulation was

(U/N)ymc = o(U/N)  —6.044+0.048 —3.727+0.053 performed first to obtain target distributiong\,(q)
(U/N)guet o(U/N)  —4.270+0.560 —1.962+0.643 =AMMC(q) and g, (r)=g"MC(r), discretized between 0
(U/N)sgmc= o (U/N) —6.07+0.059 —3.710+0.061 andr.,. The average energies and pressures are reported in
(P)mmc * o(P) 0.20+0.24 0.36-0.17 Table | and are in good agreement with previous simulations
(P)rmc*o(P) 6.833+2.00 473151 [24]. For the RMC calculation, the potential was turned off
(P)semc* o(P) —0.07+0.32 0.39-0.19 and the simulation repeated using the activity function de-
X2 ruc 0.0012 0.0014 fined by Eq. (6), with o(q)=0.001. For the semigrand

X somc 0.0011 0.0002 Monte Carlo method presented hg@GMO), Eq. (7) was

used and convergence @f*(r) judged when the mean
squared error ig(r), x5=(1n)S[g(r;)—g"™<(r)]?, was
function, and AU=U,q~Ugq and An(r)=n,e(r) less than the statistical uncertaintyg(r). < <3 yielded
—ny(r) are the differences in energy and number of pair-the best convergence. Figure 1 shows results obtained for
wise interactions at distance respectively, between succes- p* =0.84 andT* =0.75, close to the triple point for the LJ
sive configurations. The resulting procedure in this case iéuid [26]; this state point represents a fairly stringent test of
very similar to the empirical potential structure refinementthe robustness of the Monte Carlo procedure. Tfe)
method[4] and to the method of Lyubartsev and Laaksonershown was obtained by the method described here. Also
for determining “effective potentials'[23]. Using experi-  Plotted are the error&g(r)=g(r) —g""'(r) for both RMC
mental data witha* (r)=1 introduces a mean field potential @hd SGMC methods. These are of comparable magnitude
of the form— 8~ In g (r). Successive updates of the esti- and within the statistical uncertainty gV“(r). The rela-
mate ofa*(r) converge on an estimate of the effective po-tive error ing>®¥qr) is largest near=r, probably due to
tential geg(r): truncation. Using the known LJ potential, we report in Table

| the potential energies and pressures that would be obtained
a’k*(r)“ for the ensembles produced by RMC and SGMC near the

tS)

triple point and ap* =0.55, T* =1.35. For RMC, the error

in (U)/N and(P) is significant, presumably due to the treat-

ment of fluctuations by this method. The agreement between
As an illustration, a 256-particle Lennard-Jorie$) fluid MMC and SGMC methods ig(r), the thermodynamic av-

with periodic boundaries was simulated at several values ofrages(U)/N and (P), and the fluctuationsr(U/N) and

reduced densityp* =po® and temperaturd* =kgT/e. A o(P), is very good. Lastly, Fig. 1 shows the final distribu-

hard sphere potential was imposed fer0.70 and the in-  tion obtained fora* (r). This may be compared to a “true”

Gtal 1)

Pegi(r)=lim : do(r)—kgTIn

k— o0

a,

4 e 0.4

0.3

FIG. 1. Simulation results for Lennard-Jones

] fluid at p* =0.84,T* =0.75. Filled circles, radial

0.2 distribution function gS®MYr); (+), error
] Ag(r)=g"MC(r)—g"MC(r) for RMC method;
] open diamonds, error Ag(r)=g5®"qr)
0.1 —gMVC(r) for SGMC method; filled triangles,
residual activity profilea* (r) from SGMC simu-
lation [for gMMC(r)=0, the magnitude o&*(r)
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dei(r) is warranted, but beyond the scope of this communi-
cation.

The general utility of this procedure goes beyond the clas-
sical inverse problem. Many problems in materials physics
involve the study of systems that are not in thermodynamic
equilibrium, where even knowledge of the true interaction
potential is generally insufficient to simulate their structure.
The case of long chain molecules, where the longest relax-
ation time of the molecule scales with the length of the
chain, is a particularly egregious example; polymers are
commonly processed in the melt and then partially crystal-
lized or quenched below the glass transition point, thereby
fixing the structure of the material in an oriented, metastable
state. It is this metastable state for which structure-property
relationships are often desired. Experimental data on the ori-
entation distribution of individual bonds of the chain in the
real material may be obtained, for example, by solid state
NMR spectroscopy; however, calculating properties requires

FIG. 2. Comparison of true and effective potentials estimatec® model for the conformations of the long chain molecules
for the Lennard-Jones fluid at two different state points. Filledderived from this bond-level information. By equatihgith

circles, true potentialg,,{r); open squares, effective potential
dex(r) obtained atp* =0.84, T* =0.75; open triangles, effective
potential obtained gbv* =0.55, T* =1.35.

a* (r) obtained from knowledge of the LJ interaction poten-
tial: aj,(r)=exd —B¢(r))/gwulr), also shown in Fig. 1. At
this state pointa* (r) differs significantly fromaj,(r) for r
values beyond the first-neighbor peakg(r), which is in-
dicative of the insensitivity ofj(r) to the long range portion
of a*(r) at such a high density; nevertheless, this does n
detract from the quality ofi(r) or the thermodynamic quan-
tities estimated. One anticipates tlet(r) may be a func-
tion of density and temperature. Figure 2 shows estimates
¢de(r) obtained froma* (r) by Eq.(8) for the LJ fluid at the
two different state points, along with the original potential
used to generatg(r) in each case. Ajp*=0.55, T*
=1.35, the agreement betweéi () and ¢.«(r) obtained

is already quite good. A fuller investigation af (r) and

d

cosO, the azimuthal orientation angle for the bonds with
respect to the material’s principal axis of anisotropy, a simu-
lation of long chains that reproduces the experimentally ob-
served bond orientation distribution can be obtained. We
have tested this approach with some relatively simple chain
models. Treating the chains as freely jointed with no ex-
cluded volume interaction@quivalent to a random walks
particularly straightforward, since each bond of the chain is
mutually independent: a*(cog®)=1. Slightly more com-
icated models such as the freely rotating chain or chains
ith torsion potentials are also tractable, requiring only that
one iterate to obtaia*(co9®). From the distribution of con-
formations obtained by simulation, one can deduce the extent

f stretching and reorientation of the chain conformations
away from their undeformed state, important factors that af-
fect the properties of polymeric materials.
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