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Modeling experimental data in a Monte Carlo simulation
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A method is presented for modeling the structure of disordered media consistent with a set of experimental
observations, such as scattering data. The data are incorporated into a conventional semigrand canonical Monte
Carlo simulation by introducing a generalized, polydisperse composition space. This approach improves upon
previous reverse Monte Carlo procedures in that thermodynamic consistency is retained. By way of example,
the structure of a Lennard-Jones fluid is derived solely from radial distribution data.
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The so-called ‘‘inverse problem’’ is fundamental to th
study of fluids@1#. It entails the deduction of an interactio
potential from measurements of structure, such as scatte
data. Several methods aimed at solving a part of this pr
lem, the determination of detailed structure from experim
tal data, have appeared in recent years@2–5#. One reason for
the popularity of these methods is that conventional Mo
Carlo and molecular dynamics simulations often fail to
produce known information about the system within acce
able accuracy, perhaps due to limitations in the method o
the interaction potential available, and offer little guidan
when agreement between the experimental observation
its simulated equivalent is unsatisfactory. There is a ne
then, to devise modeling or simulation methods which
consistent with the statistical mechanics of fluids or glass
but which correctly reproduce known observations about
system. One method that accomplishes the latter is the
verse Monte Carlo~RMC! method@2#, which has found ap-
plications in the study of liquids, glasses, polymers, and e
imperfect crystals; for reviews, see@6–8#. RMC replaces the
role of interaction potential in the conventional Metropo
Monte Carlo~MMC! method with a measure of error in
configuration relative to the observed structure factor, wh
the role of temperature is replaced by experimental un
tainty. However, the thermodynamic interpretation is lo
thus raising questions about uniqueness and disagreeme
to how to improve upon the original procedure@7,9,10#.

The goal of this article is to show that information fro
experiments can be incorporated simply and directly int
simulation through the introduction of a generalized, po
disperse composition space. This permits a general appr
to modeling experimental data or other information about
system~i.e., not limited to scattering data!, which retains the
character of a thermodynamic system and which reverts
conventional statistical mechanical procedure when the
perimental data are absent. Experimental data can be m
eled in the absence of an accurate interaction potential~illus-
trated here by the Lennard-Jones fluid example!, but the
inclusion of both data and interaction potential within
single simulation can also be handled, without adjustable
rameters. Furthermore, thermal fluctuations are properly
tained, allowing ensembles consistent with a canonical si
lation to be realized. Finally, the general structure of
method suggests a wide range of possible uses, including
modeling of structure and orientation in materials that refl
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the processing history. Data may be of either theoretica
empirical origin, creating the opportunity to refine structu
models, to test one experimental result against another, o
identify redundant measurements.

In the physics of fluids, a polydisperse substance is a m
ture of infinitely many components. The concept was fi
defined by de Donder@11#, and has been invoked extensive
in recent years in the theory@12–15# and simulation@16–18#
of phase equilibria. Following Briano and Glandt@19#, we
begin by assuming that the components of the fluid inter
through a pair-wise additive potential given byf i j
5f(r i ,r j ,I i ,I j ), where I is a random, component
designating variable, distributed according top(I ) such that
p(I ) is normalized and everywhere non-negative. For a m
ture ofc components in the limitc→`, the grand canonica
partition function may be written

J@V,T,m~ I !#511 (
N51

`
1

N! EI 1

¯E
I N
)
i 51

N Fqint~ I i !

L3~ I i !
ebm~ I i !G

3E
r1

¯E
rN

e2bU)
i 51

N

~dr idI i !. ~1!

N is the number of particles comprising the system, ea
with position r i and component designationI i . m(I ),
qint(I ), and L(I ) are the chemical potential, internal part
tion function, and de Broglie wavelength, respectively, fo
particle of typeI. U is the potential energy of the system
U5( i j . if i j , and b5(kBT)21. We define the activity
a(I )5exp@bm(I)#, residual activitya* (I )5a(I )/p(I ), and
configurational integralZN5*¯* exp(2bU))idr i . It is also
convenient to define a referencem r and transform to the
isomolar semigrand canonical ensemble, whereN is fixed but
composition is not. The resulting partition function is

YN@N,V,T,a* ~ I !/ar* #

5
ZN

N! Fqint

L3GNE
I 1

¯E
I N
)
i 51

N Fa* ~ I i !p~ I i !

ar* pr
G)

i 51

N

dIi .

~2!

In Eq. ~2!, we have factored out the contributions fro
qint(I )/L

3(I ), which are independent ofI in the examples to
follow. Taking the functional derivative ofYN with respect
©2001 The American Physical Society11-1
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to a(I ), one obtains the following important result for th
probability distributionp(I ) of any polydisperse paramete
@19#:

p~ I !5
1

YN
E

I 2

¯E
I N

ZN

N! Fqint

L3GNF)
i 51

N
a* ~ I i !

ar*
p~ I i !

pr
G)

i 52

N

dIi .

~3!

With regard to Eq.~3!, several points are noteworthy
Speciation of the system is arbitrary, so long as each c
ponent is stipulated in a definite way and( i 51

N d(I i2I )
5n(I ), wheren(I ) is the number of ‘‘particles’’ of typeI
@20#. The species labelI is not limited to indexing of chemi-
cally distinct entities; as early as 1949, Onsager introdu
the artifice of treating~otherwise identical! anisometric par-
ticles of different orientation as being of different kind
order to evaluate solution imperfection@21#. Thus a system
that is monodisperse in one sense, e.g., a crystal of iden
Lennard-Jones particles, may at the same time be poly
perse if speciated in a different manner, e.g., by treating
phonons as the ‘‘particles.’’ Furthermore, Eq.~3! does not
require thata(I i) be independent of the valuesI j Þ i . In gen-
eral, speciation may involve more than one parameter, re
ing in the replacement ofI by a vectorI of component labels
If a set of observations can be formulated asp(I ), then the
equations above may be used to construct a Monte C
procedure by which a molecular model that reproduces th
observations is simulated directly.

Unlike a phase equilibrium calculation, whose objective
to determine coexisting compositionsp(I ), given knowledge
of the chemical potentials, modeling experimental data
volves determining the chemical potential distributionm(I ),
or equivalently a* (I ), responsible for the observed da
p(I ). At first glance, it might appear reasonable to constr
a configuration that satisfiesp(I ), and then perform a ca
nonical simulation in whichp(I ) is conserved. However, in
many real applications, it is not a trivial matter to constru
even an initial trial configuration that satisfies the desi
distribution p(I ). Furthermore, imposing an experimenta
observed distribution on each configurationindividually ~a
‘‘quenched composition’’! is too restrictive and usually no
justified by the experimental data. For these reasons,
semigrand ensemble simulations suggested here are pr
able, both in principle and in practice.

In a Monte Carlo simulation of polydisperse componen
one satisfies detailed balance by accepting a trial config
tion according to the following importance criterion~m is a
pseudorandom number between 0 and 1!:

m<min5 1,

H e2bU)
i 51

N

a* ~ I i !ptar~ I i !J
new

H e2bU)
i 51

N

a* ~ I i !ptar~ I i !J
old

6 . ~4!

ptar(I ) is the target distribution for the parameterI. If ptar(I )
is independent ofI, thena* (I )5ar51, and one recovers th
conventional Metropolis Monte Carlo procedure. If theI val-
02111
-

d

al
is-
e

lt-

lo
se

s

-

t

t
d

he
fer-

,
a-

ues of the particles are independent, then againa* (I )5ar
51, and one immediately obtains a simulation that samp
the desired distributionptar(I ) in a single run. The more gen
eral and interesting case occurs when theI value of each
particle is coupled to that of the other particles of the syste
In this case,a* (I ) is an unknown function, to be determine
iteratively. One suitable procedure, employed here, use
trial functionak* (I ) to obtain the estimatepk(I ) from a short
simulation. An improvedak* (I ) may then be obtained usin

ak11* ~ I !5ak* ~ I !Fptar~ I !

pr ,tar

pr ,k

pk~ I !G
a

, ~5!

and the process repeated untilpk(I ) converges toptar(I ) for
all I to within statistical uncertainty.k indexes the iteration.
The exponent 0,a,1 is a damping factor to improve con
vergence. a0* (I )51 has been used here, although oth
choices are possible.

By way of illustration, we consider the standard proble
of determining the structure of a Lennard-Jones fluid fro
scattering data. Identifying the polydispersity indexI with
the scattering vectorq, one first observes that the origina
formulation of RMC satisfies the more general semigra
ensemble Monte Carlo formulation presented here, with
activity function for reciprocal space,a(q), defined as

a~q!5
1

NA
expS 2

1

2 FA~q!2Atar~q!

s~q! G2D . ~6!

A(q) is the structure factor ands(q) is the experimental
uncertainty in the dataAtar(q). NA is a constant required to
normalize p(q), but its exact value is inconsequential
implementing the simulation. Defining the activity directly
this manner eliminates the thermodynamic temperature f
the simulation, replacing it with a nonthermodynamic qua
tity s(q). This has the undesirable consequence of alter
the fluctuations in the ensemble from their thermodynam
values—as the experimental uncertainty decreases, the e
tive simulation temperature decreases, regardless of the
experimental temperature.

Instead, we associatep(I i) with a normalizedN-particle
distribution functiong(N)(r i j , j Þ i) specific to particlei, i.e.,
each particle is speciated according to its position relative
the rest of the system. Invoking the approximati
g(N)(r i j , j Þ i)') jg(r i j ), whereg(r ) is the radial distribution
function, one can rewrite Eq.~3! with p(I ) equal to
(r/N)g(r ) and the product taken over all pairs.g(r ) is
readily obtained by inverse Fourier transformation ofA(q),
truncation issues notwithstanding, and contains in princi
the same information. Grouping contributions of similarr,
the number of pairwise interactions betweenr and r 1dr is
n(r )5rN(2pr 2dr )g(r ), resulting in the following inequal-
ity for importance sampling@22#:

m<minH 1,e2bDU)
r 50

r cut

@ak* ~r !gtar~r !#Dn~r !J , ~7!

where gtar(r ) is the target~e.g., experimental! distribution
function, ak* (r ) is the kth estimate of the residual activit
1-2
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function, and DU5Unew2Uold and Dn(r )5nnew(r )
2nold(r ) are the differences in energy and number of pa
wise interactions at distancer, respectively, between succe
sive configurations. The resulting procedure in this cas
very similar to the empirical potential structure refineme
method@4# and to the method of Lyubartsev and Laakson
for determining ‘‘effective potentials’’@23#. Using experi-
mental data witha* (r )51 introduces a mean field potenti
of the form2b21 ln gtar(r ). Successive updates of the es
mate ofa* (r ) converge on an estimate of the effective p
tential feff(r):

feff~r !5 lim
k→`

H f0~r !2kBT lnFgtar~r !
ak* ~r !

ar
G J . ~8!

As an illustration, a 256-particle Lennard-Jones~LJ! fluid
with periodic boundaries was simulated at several value
reduced densityr* 5rs3 and temperatureT* 5kBT/e. A
hard sphere potential was imposed forr ,0.7s and the in-

TABLE I. Result of Lennard-Jones fluid simulations.^U&/N is
the average potential energy per particle and^P& is the pressure~not
including long range corrections!. s(X)5^X2&2^X&2. MMC: Me-
tropolis Monte Carlo. RMC: reverse Monte Carlo of Ref.@2#.
SGMC: method based on the semigrand canonical ensemble.

r* 50.84,T* 50.75 r* 50.55,T* 51.35

^U/N&MMC6s(U/N) 26.04460.048 23.72760.053
^U/N&RMC6s(U/N) 24.27060.560 21.96260.643
^U/N&SGMC6s(U/N) 26.0760.059 23.71060.061
^P&MMC6s(P) 0.2060.24 0.3660.17
^P&RMC6s(P) 6.83362.00 4.7361.51
^P&SGMC6s(P) 20.0760.32 0.3960.19
xg,RMC

2 0.0012 0.0014
xg,SGMC

2 0.0011 0.0002
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teraction potential truncated atr cut52.5s, consistent with
previous studies@24#. The particles were initially placed on
the fcc lattice and equilibrated for 2048 Monte Carlo cycle
followed by 2048 cycles at each iteration fora* (r ). Statis-
tical uncertainties of 0.01 and 0.001 for^U&/N and g(r ),
respectively, were estimated by the ‘‘blocking’’ method@25#.
For each state point, a conventional MMC simulation w
performed first to obtain target distributionsAtar(q)
5AMMC(q) and gtar(r )5gMMC(r ), discretized between 0
andr cut. The average energies and pressures are reporte
Table I and are in good agreement with previous simulati
@24#. For the RMC calculation, the potential was turned o
and the simulation repeated using the activity function
fined by Eq. ~6!, with s(q)50.001. For the semigrand
Monte Carlo method presented here~SGMC!, Eq. ~7! was
used and convergence ofa* (r ) judged when the mean
squared error ing(r ), xg

25(1/n)(@g(r i)2gMMC(r i)#2, was
less than the statistical uncertainty ing(r ). 1

4 ,a, 1
2 yielded

the best convergence. Figure 1 shows results obtained
r* 50.84 andT* 50.75, close to the triple point for the L
fluid @26#; this state point represents a fairly stringent test
the robustness of the Monte Carlo procedure. Theg(r )
shown was obtained by the method described here. A
plotted are the errorsDg(r )5g(r )2gMMC(r ) for both RMC
and SGMC methods. These are of comparable magnit
and within the statistical uncertainty ofgMMC(r ). The rela-
tive error ingSGMC(r ) is largest nearr 5r cut, probably due to
truncation. Using the known LJ potential, we report in Tab
I the potential energies and pressures that would be obta
for the ensembles produced by RMC and SGMC near
triple point and atr* 50.55,T* 51.35. For RMC, the error
in ^U&/N and^P& is significant, presumably due to the trea
ment of fluctuations by this method. The agreement betw
MMC and SGMC methods ing(r ), the thermodynamic av-
erages^U&/N and ^P&, and the fluctuationss(U/N) and
s(P), is very good. Lastly, Fig. 1 shows the final distrib
tion obtained fora* (r ). This may be compared to a ‘‘true’
s
FIG. 1. Simulation results for Lennard-Jone
fluid at r* 50.84,T* 50.75. Filled circles, radial
distribution function gSGMC(r ); ~1!, error
Dg(r )5gRMC(r )2gMMC(r ) for RMC method;
open diamonds, error Dg(r )5gSGMC(r )
2gMMC(r ) for SGMC method; filled triangles,
residual activity profilea* (r ) from SGMC simu-
lation @for gMMC(r )50, the magnitude ofa* (r )
is unimportant, and set arbitrarily to 1.0#; open
triangles, ‘‘true’’ residual activity profile,
atrue* (r )5exp@2bf(r)#/g(r).
1-3
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a* (r ) obtained from knowledge of the LJ interaction pote
tial: atrue* (r )5exp@2bf(r)#/gtar(r ), also shown in Fig. 1. At
this state point,a* (r ) differs significantly fromatrue* (r ) for r
values beyond the first-neighbor peak ing(r ), which is in-
dicative of the insensitivity ofg(r ) to the long range portion
of a* (r ) at such a high density; nevertheless, this does
detract from the quality ofg(r ) or the thermodynamic quan
tities estimated. One anticipates thata* (r ) may be a func-
tion of density and temperature. Figure 2 shows estimate
feff(r) obtained froma* (r ) by Eq.~8! for the LJ fluid at the
two different state points, along with the original potent
used to generategtar(r ) in each case. Atr* 50.55, T*
51.35, the agreement betweenf true(r ) andfeff(r) obtained
is already quite good. A fuller investigation ofa* (r ) and

FIG. 2. Comparison of true and effective potentials estima
for the Lennard-Jones fluid at two different state points. Fil
circles, true potential,f true(r ); open squares, effective potenti
feff(r) obtained atr* 50.84, T* 50.75; open triangles, effective
potential obtained atr* 50.55,T* 51.35.
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feff(r) is warranted, but beyond the scope of this commu
cation.

The general utility of this procedure goes beyond the cl
sical inverse problem. Many problems in materials phys
involve the study of systems that are not in thermodynam
equilibrium, where even knowledge of the true interacti
potential is generally insufficient to simulate their structu
The case of long chain molecules, where the longest re
ation time of the molecule scales with the length of t
chain, is a particularly egregious example; polymers
commonly processed in the melt and then partially crys
lized or quenched below the glass transition point, there
fixing the structure of the material in an oriented, metasta
state. It is this metastable state for which structure-prope
relationships are often desired. Experimental data on the
entation distribution of individual bonds of the chain in th
real material may be obtained, for example, by solid st
NMR spectroscopy; however, calculating properties requ
a model for the conformations of the long chain molecu
derived from this bond-level information. By equatingI with
cosQ, the azimuthal orientation angle for the bonds w
respect to the material’s principal axis of anisotropy, a sim
lation of long chains that reproduces the experimentally
served bond orientation distribution can be obtained.
have tested this approach with some relatively simple ch
models. Treating the chains as freely jointed with no e
cluded volume interactions~equivalent to a random walk! is
particularly straightforward, since each bond of the chain
mutually independent: a* ~cosQ)51. Slightly more com-
plicated models such as the freely rotating chain or cha
with torsion potentials are also tractable, requiring only th
one iterate to obtaina* ~cosQ). From the distribution of con-
formations obtained by simulation, one can deduce the ex
of stretching and reorientation of the chain conformatio
away from their undeformed state, important factors that
fect the properties of polymeric materials.

Funding for this work was provided in part by the N
tional Science Foundation~Grant No. CTS-9457111!.
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